Please check the examination details bel	ow before enteri	ring your candidate information
Candidate surname		Other names
Centre Number Candidate No	umber	
Pearson Edexcel Level	1/Leve	el 2 GCSE (9–1)
Time 1 hour 10 minutes	Paper reference	1SCO/1PH
Combined Science	е	•
PAPER 3		
Higher Tier		
nigher riei		
You must have:		Total Marks
	1 1	Total Marks
Calculator, ruler, Equation Booklet (er	iciosea)	ll l

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- A list of equations is included at the end of this exam paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 (a) Which statement describes conservation of energy in a closed system?

(1)

- **A** when there are energy transfers, the total energy reduces
- **B** when there are energy transfers, the total energy does not change
- C when there are no energy transfers, the total energy reduces
- **D** when there are no energy transfers, the total energy increases
- (b) A student uses the apparatus in Figure 1 to find out which of two materials, sand or sawdust, is the better insulator.

Figure 1

The student also has a kettle to boil water, a thermometer and a stop clock.

(i) Draw a labelled diagram to show how the student should set up the equipment to investigate which material is the better insulator.

(3)

(ii) Give three t	factors that the student must control in this investigation.	(3)
1		
2		
3		
Figure 2 shows	styrene, used to insulate buildings, has different densities. how the thermal conductivity of expanded polystyrene changes y of expanded polystyrene.	
thermal conductivity of expanded polystyrene in mW/m.K	45 40 35 30 10 15 20 25 30 35 40 density of expanded polystyrene in kg/m ³	
	Figure 2	
	n in Figure 2, describe how the thermal conductivity of expanded anges with the density of expanded polystyrene.	(2)

(2)

2 (a) Figure 3 is a speed limit sign from a European motorway.

The speeds shown are in km/h (kilometres per hour).

Figure 3

((i)	The sign tells drivers to drive at a slower speed in wet weather.	
		Explain why it is safer for drivers to drive at a slower speed in wet weather.	(2)
((ii)	Show that a speed of 31 m/s is less than a speed of 130 km/h.	

(iii)

The driver's reaction time is the time between the driver seeing an emergency and starting to brake.

A car is travelling at a speed of 31 m/s.

The car travels 46 m between the driver seeing an emergency and starting to brake.

Calculate the driver's reaction time.

Give your answer to 2 significant figures.

(3)

driver's reaction time

(Total for Question 2 = 7 marks)

3 (a) (i) An aircraft starts from rest and accelerates along the runway for 36s to reach take-off velocity.

Take-off velocity for this aircraft is 82 m/s.

Show that the acceleration of the aircraft along the runway is about 2 m/s².

Assume the acceleration is constant.

(2)

(ii) Calculate the distance the aircraft travels along the runway before take-off.

Use the equation

$$v^2 - u^2 = 2ax$$

(3)

distance = m

(iii) Suggest one reason why the length of the runway used is always much longer than the calculated distance that the aircraft travels along the runway before take-off.	(1)
(b) (i)	The aircraft lands with a velocity of 71 m/s. The mass of the aircraft is $3.6\times10^5\mathrm{kg}$. Calculate the kinetic energy of the aircraft as it lands.	(2)
(ii)	kinetic energy of aircraft =	J

(Total for Question 3 = 9 marks)

BLANK PAGE

4 (a) Which of these is a unit of momentum?

(1)

- A kg m/s
- B kg/m/s
- \square **C** kg m/s²
- \square **D** kg/m/s²
- (b) Students investigate conservation of momentum using two identical trolleys.

A card is then added to trolley A.

Some of the apparatus is set up as shown in Figure 4.

Figure 4

(i) Describe an investigation the students could carry out to show that momentum is conserved when these two trolleys collide.

You may add to the d	liagram to help	with your answer.
----------------------	-----------------	-------------------

(ii) Give a reason for the runway being at a slope.

(1)

(c) Figure 5 shows a racket and a tennis ball.

The tennis ball is travelling towards the racket at a velocity of 8.2 m/s.

The ball is hit back in the opposite direction at a velocity of 15 m/s.

The ball has a mass of 0.075 kg.

The ball is in contact with the racket for 12 ms.

(i) Calculate the average force exerted by the ball on the racket.

Use the equation

$$F = \frac{mv - mu}{t}$$

Figure 5

(3)

force = N

(ii)	Describe how Newton's Third Law of Motion applies to the collision between the racket and the ball.	
	the facket and the ball.	(2)
	(Total for Question 4 = 11 mar	ks)

5 (a) Rutherford devised an experiment to fire alpha particles at thin gold foil.

It was found that alpha particles were scattered by the gold foil.

The gold foil was about 4.0×10^{-7} m thick.

A gold atom has a diameter of about 0.15 nm.

Estimate how many gold atoms would fit across this thickness of gold foil.

(2)

number of atoms =

(b) The apparatus that was used in the experiment is shown in Figure 6.

Figure 6

(i) The number of particles detected at each angle in a given time is shown on the graph in Figure 7.

number of scattered particles detected

Figure 7

Use information from the graph.

Estimate the ratio of the number of particles scattered through 5° to the number of particles scattered through 100° .

(2)

ratio =

(ii)	Explain how the difference in the number of particles scattered at different angles gives evidence for the current model of the structure of the atom.	(4)

(c) Students are given the apparatus shown in Figure 8 and a protractor.

Figure 8

 (i) Describe how the students could use the apparatus to model the scattering of alpha particles.

(ii) Give **one** limitation of this model.

(1)

(Total for Question 5 = 11 marks)

- **6** This question is about waves in the electromagnetic (e.m.) spectrum.
 - (a) The potential danger associated with the waves of the e.m. spectrum increases as

(1)

- A frequency decreases
- **B** frequency increases
- **D** velocity increases
- (b) (i) A microwave oven uses waves of frequency 2.45 GHz.

Calculate the wavelength of the microwaves.

The velocity of light is 3.00×10^8 m/s.

(3)

wavelength =m

(ii) The microwave oven is 55% efficient and transfers 42 000 J of energy to some food when it is heated.

Calculate the total amount of energy that must be supplied to the oven.

(3)

c) X-rays and radio waves are part of the electromagnetic spectrum and have different uses.	
These radiations are produced in different ways.	
X-rays are emitted when electrons within an atom go through energy changes.	
Radiowaves are produced by electrons in circuits.	
Compare X-rays with radio waves.	
Your answer should refer to	
the uses of both types of radiation	
• the different ways that electrons are involved in producing X-rays and	
radio waves.	(6)
(Total for Question 6 = 13 n	narks)
TOTAL FOR PAPER = 60 M	IARKS

BLANK PAGE

Equations

(final velocity)² – (initial velocity)² = $2 \times \text{acceleration} \times \text{distance}$

$$v^2 - u^2 = 2 \times a \times x$$

force = change in momentum ÷ time

$$F = \frac{(mv - mu)}{t}$$

energy transferred = current \times potential difference \times time

$$E = I \times V \times t$$

force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density \times current \times length

$$F = B \times I \times I$$

 $\frac{\text{voltage across primary coil}}{\text{voltage across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$

$$\frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}}$$

potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil

$$V_{\rm p} \times I_{\rm p} = V_{\rm s} \times I_{\rm s}$$

change in thermal energy = mass \times specific heat capacity \times change in temperature

$$\Delta Q = m \times c \times \Delta \theta$$

thermal energy for a change of state = mass \times specific latent heat

$$Q = m \times L$$

to calculate pressure or volume for gases of fixed mass at constant temperature

$$P_1 V_1 = P_2 V_2$$

energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$

$$E = \frac{1}{2} \times k \times x^2$$

pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength

$$P = h \times \rho \times g$$

